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I. INTRODUCTION

We continue [6] by studying the simultaneous approximation of a real
valued function and its derivatives on the unit circle K. In order to do this,
we will need a theorem giving sufficient conditions for the solvability of the
Birkhoff interpolation problem in the periodic case.

Let C;(K) be the space of i-times continuously differentiable real-valued
functions defined on the unit circle K. If 11'11 denotes the uniform norm on
C(K), then

will be called the simultaneous norm. Here f U ) denotes the jth derivative of
f in the clockwise direction.

Let H be a finite-dimensional Chebycheff subspace of Ck(K). We will
investigate whether f E Ck(K) has a unique best approximation from H
with respect to II' k This is usually not the case and we will determine the
precise dimension of the set Q H(f) of best simultaneous approximations to
ffrom H.

The ideas are similar to those in [6] but, due to the periodic nature of
the functions involved, the structure of Q H(f) is particularly simple. In fact,
it will be shown that the set of best approximations consists of either one
point or is one-dimensional. This is in contrast to the algebraic case [6], in
which the dimension of Q H(f) could have been as high as k if the
approximation was with respect to II' Ilk'

Let A c CiK). AU) will then denote the set

AU)= {aU)laEA}.
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Our main theorem will be
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THEOREM 1. Let H be an N-dimensional subspace of Ck+ 2(K) such that
each non-zero hE H(k + 2) has at most N - 1 zeros. If f E Ck + 1(K), then
Q H,k(f), the set of best approximations to f from H with respect to 11'11 b has
dimension at most one.

II. THE PERIODIC BIRKHOFF INTERPOLATION PROBLEM

In order to prove Theorem 1, we will need sufficient conditions for the
regularity of. the Birkhoff interpolation problem for periodic Chebycheff
subspaces H of dimension N which satisfy the additional condition that no
element of H(k) can have more than N - 1 zeros. These assumptions on H
are more restrictive than one might assume at first glance, for

LEMMA 2. Let H be an N-dimensional subspace of Ck(K) such that each
non-zero hE H(k) has at most N - 1 zeros. Then

(1) H is a Chebycheff space;

(2) N is odd;

(3) dim H(i) = N -1, i= 1, 2, ..., k;

(4) each non-zero hE H(i) has at most N - 1 zeros, i = 1, 2,... , k;

(5) the constant function belongs to H.

Proof A very important, although elementary, fact about zeros of
periodic functions is

LEMMA 3. If f E C 1(K) has N zeros, then f' also has at least N zeros.

This is Rolle's theorem for periodic functions and explains why results
for periodic systems differ so much from results for systems defined on
intervals. Parts (1) and (4) of Lemma 2 follow from Lemma 3
immediately, for if any non-zero f E H(i), i = 0, 1,..., k - 1, had N or more
zeros, then by repeated application of Lemma 3, f(k - 0, which belongs to
H(k), would also have at least N zeros contradicting the assumption
on H(k).

From (4) now follows that no non-zero f E H( 1) can have more than
N - 1 zeros. If the dimension of H(l) were N, then H(l) would be a
Chebycheff space and therefore contains a strictly positive function (see
[3] or [7]). But this is impossible since iffEH(l), thenf=h' for some
hE Hand

f
27< f27<

f(t)dt= h'(t)dt=h(2n)-h(0)=0.
o 0
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This is incompatible with f(t) > 0 for all t E [0, 2n). Thus dim H(l) ~ N - 1.
Since the constant function is the only continuous solution to h' = 0 on K,
it follows that the constant function belongs to H and that dim H(l) =
N - 1. Since the constant function is also the only continuous solution to
f U) = 0 on K, it also follows that dim HU) = N - 1, i = 1,... , k.

We have shown that H is a Chebycheff subspace of dimension N. Then N
is necessarily odd since there exist no Chebycheff subspaces of even dimen
sion on K (see [7J).

Our theorem thus applies to a fairly restricted class of subspaces. One of
these is the subspace Tn of trigonometric polynomials. This was shown by
Johnson [2]. Another example is the space of periodic algebraic
polynomials ~,n which we present here for the first time

Iln denotes the space of algebraic polynomials of degree not exceeding n.
The proof that &>n.r is indeed an n - r dimensional subspace of Cr(K) which
satisfies the conditions of Theorem 1 will be deferred to the end of our
exposition.

The main tool used to prove Theorem 1 will be the theory of Birkhoff
interpolation for periodic systems. The method of proof follows the same
lines as for the trigonometric case as developed in [1].

Let E= (eij) be an m x (n + 1) matrix consisting of only zeros and ones.
E is called an incidence matrix, We will number the rows (which corres
pond to knots of interpolation) from 1 to m and the columns (which
correspond to the derivative being interpolated) from 0 to n. Let
He Cn(K). The Birkhoff interpolation problem (B.I.P.) for E and H is to
find an element hE H satisfying

h(J)(t) = b·, IJ

for given data bij, knots 0 ~ t 1 < ... < tm < 2n and for those pairs (i, j) such
that eij = 1. If there is a unique solution to this problem for each set of data
and each choice of ordered knots, E is said to be regular (with respect to
H). Otherwise E is singular. A sequence of E of length I is a maximal
sequence of ones which has length I and lies in some row of E: ei,j = 0,
ei,j+l='" =e i,j+I=I,e;,j+l+l=O. Thepossibilitiesj= -1 andj+l+l=
n + 1 are allowed. A sequence is called even or odd if it has even or odd
length. The sequence given above is said to be (periodically) supported if
some eS,l = 1 for t ~ j.

THEOREM 4. Let E be an m x (n + 1) incidence matrix which has exactly
N ones, has at least one 1 in its Oth column and which has no odd supported
sequences. Suppose that He Cn + 1(K) has dimension N and that no
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g E H(n + j) has more than N - 1 zeros without vanishing identically. Then E is
regular with respect to H. That is, the B.I.P. corresponing to E always has a
unique solution in H.

Moreover, if E satisfies the above conditions but has more than N ones, the
only solution to the homogeneous B./.P. is the zero function.

Proof We will show that the only solution to the homogeneous B.I.P.
is the zero function. This implies that a unique solution to the B.I.P. with
arbitrary data exists.

Let m; be the number of ones in the ith column of E and let
T = {t I,... , tm} be given. Suppose that hE H satisfies the homogeneous
B.I.P. for E. Then h has mo zeros. By Rolle's theorem, unless h == 0, hi has a
sign change between each of the mo zeros of h. We would like to add to
these, the m l zeros prescribed by E to conclude that h' has mo+ m j zeros.
But some of the mo zeros determined by Rolle's theorem may coincide with
some of the m j zeros determined by E. If this is the case, we must analyse
more carefully what happens. Then there are three knots t; < tj < t k such
that e;,0 = ej,1 = ek,O = 1 and e1,0 = 0 for i < I < k. Thus a supported begins at
position (j, 1). This sequence is, by assumption, even. But h' must change
its sign between t; and t k • Therefore, either hi has another zero between 1;
and tk> or the zero t j must have a higher multiplicity. In the first case, we
do not lose a zero when counting the zeros of h'. In the second case, we
may conclude that h' has a zero of multiplicity at least one more than the
length of the sequence (inasfar as h is sufficiently often differentiable). As
we will be repeating this process, we will have lost a zero of h' but we will
regain it at some higher derivative. Since such a coincidence can occur at
most once for each sequence, the lost zero will be rewon at the latest when
we have arrived at the n + 1st derivative.

Thus by repeating this process, we may conclude that h(n+ I) has at least
mo+ m 1 + ... + mn= N zeros. Thus h(n + 1) == O. By Lemma 2, dim H(i) =
N - 1 for i = 1, 2, ..., n + 1, Therefore hi == 0 and so h == constant. But h( t) = 0
at one of the knots, thus h == 0 as desired.

If one assumes a little more about the zeros of the elements of H(n), then
no assumption on H(n + 1) is needed. The concept we use is that of the mul
tiplicity of zeros, which may be found in Karlin and Studden [3]. Let
fEC(K) orfEC(I), where lis the closed interval [a,b]. Letf(t)=O. We
say that fhas a zero of order one at t E K or t E [a, b] iff changes sign at t
or if t is one of the endpoints of I. We say that f has a zero of multiplicity
two if f(s) ~ 0 or f(s):::; 0 in some neighborhood of t. Z(f) will denote the
number of zeros of f counting multiplicities in this way.

It is well known that if He C(K) or He C(I) is a Chebycheff subspace
of degree n, then Z(f):::; n - 1 for each f E H. Moreover, for any f E C(K),
Z(f) is always an even number. The interesting feature of these con-
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siderations is that a zero t off may be counted with multiplicity two even
though f'(t) may not exist.

THEOREM 5. Let E be an m x (n + 1) incidence matrix which has exactly
N ones, has at least one 1 in its Oth column and which has no odd supported
sequences. Suppose that He Cn(K) has dimension N and that no g E H(n) has
more than N - 1 zeros counting multiplicities. Then E is regular with respect
to H.

If E satisfies the above conditions and has more than N ones, then the only
solution to the homogeneous R.I.P. corresponding to E is the zero function.

The proof follows that of Theorem 4 except that one may only conclude
that an h satisfying the homogeneous B.I.P. has an nth derivative which has
at least N zeros counting multiplicities. The main new technical difficulty
occurs when, while counting zeros, a new zero is to be added to a sequence
ending in the nth column. A satisfactory treatment of this difficulty may be
found in Keener [4].

A particularly simple case in which the hypothesis is satisfied is if
G = span {1, H(n)} is a Chebycheff space of dimension N (if dim H = N).
Then no element of G and hence no element of H(n) can have more than
N - 1 zeros counting multiplicities. It will be shown later that this holds for
&".r the set of periodic algebraic polynomials. There are some hints that this
favorable circumstance is not improbable. Firstly, for any H satisfying the
conditions of Theorem 5, the constant function can never belong to H(n) so
that dim span {I, H(n)} = N always. Secondly, the following lemma, whose
proof follows easily from Lemma 3, holds.

LEMMA 6. Let H be an N-dimensional subspace of Cn(K) such that no
non-zero element of H(n) has more than N -1 zeros. Then span {1, H(i)} is an
N-dimensional Chebycheff subspace of Cn- i(K) for i = 1,..., n - 1.

III. SIMULTANEOUS ApPROXIMATION

We may use these results on the periodic B.I.P. to characterize the
dimension of the set of best approximations to a function with respect to a
simultaneous norm.

We defined

for fcC k( K). Let He Ck(K). Then we denote by Q H,k(f) (or by Q H(f)),
the set of best approximations to f from H with respect to II' II k and by
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EH,k(f) the degree of approximation to f from H. Then for each
hcQH(f), Ilf-hllk=EH,k(f). By Uif,h), we denote the extremal sets of
the approximation h to f

for j = 0, 1,..., k. The extremal sets are compact and at least one of them is
non-empty. Since Q H(f) is convex, it has a relative interior and a relative
dimension. dim Q H(f) will denote the relative dimension of Q H(f). Any
element of H lying in the relative interior of Q H(f) will be called a minimal
best approximation (to f). This terminology is motivated by

LEMMA 7. If h is a minimal best approximation to f, then for any other
best approximation g,

Uif, h) c Uif, g), j=o, 1'00" k.

Thus the extremal sets of a minimal best approximation are the smallest
possible. It follows immediately that for any two minimal best
approximations h, g to f, we have Uif, h) = Uj(f, g), j =0, 1'00" k. These
common sets will be denoted by Uif) and will be called the extremal sets
off since they depend only on f and H and not on the choice of a minimal
best approximation.

LEMMA 8. We have

j = 0, 1'00" k - 1

g(Jl(t) = h(J)(t),

g(J+ I)(t) = h(J+ I)(t),

tE Uif)

tE Uif)

for all j = 0, 1'00" k.

The fact that two best approximations must coincide on so many points
yields the uniqueness theorem.

THEOREM 9. Let H be an N-dimensional subspace of Ck+2(K) such that
no non-zero element of H(k + 2) has more than N - 1 zeros. Let f E Ck+ I' If
Uo(f) # 0, then the best approximation to f from H with respect to II' Ilk is
unique. If Uo(f) = 0, then dim Q H,k(f) = 1. In any case, dim Q H.k(f) ~ 1.
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Proof Let h be a minimal best approximation to f and g be any other
element of Q H(f). By Lemma 8,

(h- g)U)(t)=O

(h - g)u+ I)(t) = 0

for t E Uj(t), j = 0, 1"." k. Let E be the incidence matrix corresponding to
these conditions. We will show that E contains at least N ones. By
Lemma 8, we know that the pairs of conditions appearing above cannot
overlap each other. Thus E has only even sequences. If therefore E had
M ~ N - lones, we could add N - M new ones to the Oth column (adding
new knots if necessary) to obtain an incidence matrix E satisfying the con
ditions of Theorem 4. It follows that there is a u E H satisfying

UU)(t) = (J(h(t) - f(t))

for tE Uj(t),j=O, 1,..., k, where (J(t) is the sign of t. But then h-eu, for all
e> 0 sufficiently small, is a better approximation to f than h is. This is by
assumption not possible, so M ~ N.

As in the proof of Theorem 4, (h - g)(k+ I) has M zeros and therefore
(h - g)(k+ 1) == O. Since dim H(l) = dim H(k+ I), (h - g)' == 0 and so h - g is a
constant. If Uo(/) # 0, then (h - g)(t) = 0 at one of the knots which
implies that h - g == 0 and that Q H,df) = {h}. If Uo(/) =0, then
h + cEQH(/) for all constants c such that Icl is sufficiently small.

THEOREM 10. Let H be an N-dimensional subspace of Ck+I(K) such that
no non-zero element of H(k + I) can have more than N - 1 zeros counting mul
tiplicities. Let f E Ck+ I (K). If Uo(/) # 0, then the best approximation to f
from H with respect to 11'11 k is unique. If U0(/) =0, then dim Q Hk(/) = 1.
In any case, dim Q H,k(/) ~ 1. '

IV. AN EXAMPLE

By &:.,n we denote the space of periodic algebraic polynomials:

We will show that if n - r is odd, then &:.,r satisfies the assumptions of
Theorem 10 with N = n - r and for any k ~ r - 1.

LEMMA 11. Let &:..r be the space of periodic algebraic polynomials
defined above. Suppose n - r is odd.
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Then
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(1) dim &:.,r = n - r;

(2) &:.,r is a Chebycheff subspace of Cr(K);

(3) for each i, °~ i ~ r, no element of &p~i~ can have more than
n - r - 1 zeros counting multiplicities.

Proof We will first show that if n - r is odd, then no element of &p~~

can have more than n - r - 1 zeros counting multiplicities for i = 0, 1,..., r.
Due to Lemma 3, it suffices to show this for i = r; i.e., to show that for each
P E &p~~, Z(P) ~ n - r - 1. The elements of &p~~ are polynomials P of degree
not exceeding n - r and for which P(O) = P(2n). Suppose that some
polynomial P had Z(P) ~ n - r. Since n - r is odd, Z(P) ~ n - r + 1 since
Z(P) is always even. We will now consider P as being defined on
I = [0, 2n]. Let ZK(P) (respectively ZAP)) be the number of zeros of P
counting multiplicities when defined on K (respectively when defined on
I=[0,2n]). It can easily be seen that ZK(P)~ZI(P), But ZK(P)~

n-r+ 1 so that also ZI(P)~n-r+ 1. Since PEIln _ n P=.O. This
proves (3).

By definition, &:.,r is a subspace consisting of those elements of the n + 1
dimensional space Iln which satisfy r + 1 linear conditions. Thus dim
&:.,r ~ n - r. But, if n - r is odd, we have just shown that no element of &:.,r
can have more than n - r - 1 zeros. Therefore &:.,r is a ChebychefT subspace
and dim &:.,r = n - r which proves (1).

Since, by definition, all elements of &:.,r have periodic derivatives of order
up to r, (2) has also been shown.

An interesting aspect of this proof is that absolutely no calculations were
needed to show that dim &:.,r = n - r. An alternative proof would have been
to show that the r + 1 linear conditions determining &:.,r are linearly
independent (which is not hard to do). Then dim &:.,r = n - r follows
immediately (even if n - r is even),

COROLLARY 12. Let fECk+t(K). Let n~r~O,n-r be odd and
k ~ r - 1. Then the dimension of the set of best approximations from &:..r to f
with respect to II' Ilk does not exceed 1. In particular, if Uo(f) -# 0, the best
approximation is unique. If Uo(f) = 0, the set of best approximations has
dimension exactly one,

COROLLARY 13. For 1~ i ~ r,

span{I, &'~:~} = &:. _i,r - i'



SIMULTANEOUS APPROXIMAnON II

V. CONCLUDING REMARKS
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As in [6], the norm of simultaneous approximation could have been
chosen to be

IlflIF= max Ilf(ki)11
i~ i, ...,p

where °~ k i < k 2 < .. , < k p • For this semi-norm, the formulation of
Theorems 9 and 10 and their proofs remain the same.

The assumption that fECk+i(K), which was made in Theorems 9
and 10, appears unnatural since the norm 11'11 k involves derivatives of order
only up to k. The theorems are, however, false without this assumption as
can be seen by example given in [2].

Theorems 4 and 5 on the regularity of the periodic B.I.P. are not sharp
of course because they only give necessary conditions for regularity. By
comparing these general theorems with their trigonometric counterparts
[1], one sees which of the assumptions are indispensable.
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