Simultaneous Approximation and Birkhoff Interpolation II: The Periodic Case

R. A. Lorentz
Department of Mathematics, Texas $A \& M$ University, College Station, Texas 77843, U.S.A. and Gesellschaft für Mathematik und Datenverarbeitung, Schloss Birlinghoven, Postfach 1240, 5205 St. Augustin 1, West Germany
Communicated by E. W. Cheney

Received August 4, 1983; revised June 11, 1984

I. Introduction

We continue [6] by studying the simultaneous approximation of a realvalued function and its derivatives on the unit circle K. In order to do this, we will need a theorem giving sufficient conditions for the solvability of the Birkhoff interpolation problem in the periodic case.

Let $C_{i}(K)$ be the space of i-times continuously differentiable real-valued functions defined on the unit circle K. If $\|\cdot\|$ denotes the uniform norm on $C(K)$, then

$$
\|f\|_{k}=\max _{j=0,1, \ldots, k}\left\|f^{(j)}\right\|
$$

will be called the simultaneous norm. Here $f^{(j)}$ denotes the j th derivative of f in the clockwise direction.

Let H be a finite-dimensional Chebycheff subspace of $C_{k}(K)$. We will investigate whether $f \in C_{k}(K)$ has a unique best approximation from H with respect to $\|\cdot\|_{k}$. This is usually not the case and we will determine the precise dimension of the set $\Omega_{H}(f)$ of best simultaneous approximations to f from H.

The ideas are similar to those in [6] but, due to the periodic nature of the functions involved, the structure of $\Omega_{H}(f)$ is particularly simple. In fact, it will be shown that the set of best approximations consists of either one point or is one-dimensional. This is in contrast to the algebraic case [6], in which the dimension of $\Omega_{H}(f)$ could have been as high as k if the approximation was with respect to $\|\cdot\|_{k}$.

Let $A \subset C_{j}(K) . A^{(j)}$ will then denote the set

$$
A^{(j)}=\left\{a^{(j)} \mid a \in A\right\} .
$$

Our main theorem will be
Theorem 1. Let H be an N-dimensional subspace of $C_{k+2}(K)$ such that each non-zero $h \in H^{(k+2)}$ has at most $N-1$ zeros. If $f \in C_{k+1}(K)$, then $\Omega_{H, k}(f)$, the set of best approximations to ffrom H with respect to $\|\cdot\|_{k}$, has dimension at most one.

II. The Periodic Birkhoff Interpolation Problem

In order to prove Theorem 1, we will need sufficient conditions for the regularity of the Birkhoff interpolation problem for periodic Chebycheff subspaces H of dimension N which satisfy the additional condition that no element of $H^{(k)}$ can have more than $N-1$ zeros. These assumptions on H are more restrictive than one might assume at first glance, for

Lemma 2. Let H be an N-dimensional subspace of $C_{k}(K)$ such that each non-zero $h \in H^{(k)}$ has at most $N-1$ zeros. Then
(1) H is a Chebycheff space;
(2) N is odd;
(3) $\operatorname{dim} H^{(i)}=N-1, i=1,2, \ldots, k$;
(4) each non-zero $h \in H^{(i)}$ has at most $N-1$ zeros, $i=1,2, \ldots, k$;
(5) the constant function belongs to H.

Proof. A very important, although elementary, fact about zeros of periodic functions is

Lemma 3. If $f \in C_{1}(K)$ has N zeros, then f^{\prime} also has at least N zeros.
This is Rolle's theorem for periodic functions and explains why results for periodic systems differ so much from results for systems defined on intervals. Parts (1) and (4) of Lemma 2 follow from Lemma 3 immediately, for if any non-zero $f \in H^{(i)}, i=0,1, \ldots, k-1$, had N or more zeros, then by repeated application of Lemma 3, $f^{(k-i)}$, which belongs to $H^{(k)}$, would also have at least N zeros contradicting the assumption on $H^{(k)}$.

From (4) now follows that no non-zero $f \in H^{(1)}$ can have more than $N-1$ zeros. If the dimension of $H^{(1)}$ were N, then $H^{(1)}$ would be a Chebycheff space and therefore contains a strictly positive function (see [3] or [7]). But this is impossible since if $f \in H^{(1)}$, then $f=h^{\prime}$ for some $h \in H$ and

$$
\int_{0}^{2 \pi} f(t) d t=\int_{0}^{2 \pi} h^{\prime}(t) d t=h(2 \pi)-h(0)=0 .
$$

This is incompatible with $f(t)>0$ for all $t \in[0,2 \pi)$. Thus $\operatorname{dim} H^{(1)} \leqslant N-1$. Since the constant function is the only continuous solution to $h^{\prime}=0$ on K, it follows that the constant function belongs to H and that $\operatorname{dim} H^{(1)}=$ $N-1$. Since the constant function is also the only continuous solution to $f^{(i)}=0$ on K, it also follows that $\operatorname{dim} H^{(i)}=N-1, i=1, \ldots, k$.

We have shown that H is a Chebycheff subspace of dimension N. Then N is necessarily odd since there exist no Chebycheff subspaces of even dimension on K (see [7]).

Our theorem thus applies to a fairly restricted class of subspaces. One of these is the subspace T_{n} of trigonometric polynomials. This was shown by Johnson [2]. Another example is the space of periodic algebraic polynomials $\mathscr{P}_{n, r}$, which we present here for the first time

$$
\mathscr{P}_{n, r}=\left\{P \in \Pi_{n} \mid P^{(i)}(0)=P^{(i)}(2 \pi), i=0,1, \ldots, r\right\} .
$$

Π_{n} denotes the space of algebraic polynomials of degree not exceeding n. The proof that $\mathscr{P}_{n, r}$ is indeed an $n-r$ dimensional subspace of $C_{r}(K)$ which satisfies the conditions of Theorem 1 will be deferred to the end of our exposition.

The main tool used to prove Theorem 1 will be the theory of Birkhoff interpolation for periodic systems. The method of proof follows the same lines as for the trigonometric case as developed in [1].

Let $E=\left(e_{i j}\right)$ be an $m \times(n+1)$ matrix consisting of only zeros and ones. E is called an incidence matrix. We will number the rows (which correspond to knots of interpolation) from 1 to m and the columns (which correspond to the derivative being interpolated) from 0 to n. Let $H \subset C_{n}(K)$. The Birkhoff interpolation problem (B.I.P.) for E and H is to find an element $h \in H$ satisfying

$$
h^{(j)}\left(t_{i}\right)=b_{i j}
$$

for given data $b_{i j}$, knots $0 \leqslant t_{1}<\cdots<t_{m}<2 \pi$ and for those pairs (i, j) such that $e_{i j}=1$. If there is a unique solution to this problem for each set of data and each choice of ordered knots, E is said to be regular (with respect to H). Otherwise E is singular. A sequence of E of length l is a maximal sequence of ones which has length l and lies in some row of $E: e_{i, j}=0$, $e_{i, j+1}=\cdots=e_{i, j+l}=1, e_{i, j+l+1}=0$. The possibilities $j=-1$ and $j+l+1=$ $n+1$ are allowed. A sequence is called even or odd if it has even or odd length. The sequence given above is said to be (periodically) supported if some $e_{s, t}=1$ for $t \leqslant j$.

Theorem 4. Let E be an $m \times(n+1)$ incidence matrix which has exactly N ones, has at least one 1 in its 0 th column and which has no odd supported sequences. Suppose that $H \subset C_{n+1}(K)$ has dimension N and that no
$g \in H^{(n+1)}$ has more than $N-1$ zeros without vanishing identically. Then E is regular with respect to H. That is, the B.I.P. corresponing to E always has a unique solution in H.

Moreover, if E satisfies the above conditions but has more than N ones, the only solution to the homogeneous B.I.P. is the zero function.

Proof. We will show that the only solution to the homogeneous B.I.P. is the zero function. This implies that a unique solution to the B.I.P. with arbitrary data exists.

Let m_{i} be the number of ones in the i th column of E and let $T=\left\{t_{1}, \ldots, t_{m}\right\}$ be given. Suppose that $h \in H$ satisfies the homogeneous B.I.P. for E. Then h has m_{0} zeros. By Rolle's theorem, unless $h \equiv 0, h^{\prime}$ has a sign change between each of the m_{0} zeros of h. We would like to add to these, the m_{1} zeros prescribed by E to conclude that h^{\prime} has $m_{0}+m_{1}$ zeros. But some of the m_{0} zeros determined by Rolle's theorem may coincide with some of the m_{1} zeros determined by E. If this is the case, we must analyse more carefully what happens. Then there are three knots $t_{i}<t_{j}<t_{k}$ such that $e_{i, 0}=e_{j, 1}=e_{k, 0}=1$ and $e_{l, 0}=0$ for $i<l<k$. Thus a supported begins at position ($j, 1$). This sequence is, by assumption, even. But h^{\prime} must change its sign between t_{i} and t_{k}. Therefore, either h^{\prime} has another zero between t_{i} and t_{k}, or the zero t_{j} must have a higher multiplicity. In the first case, we do not lose a zero when counting the zeros of h^{\prime}. In the second case, we may conclude that h^{\prime} has a zero of multiplicity at least one more than the length of the sequence (inasfar as h is sufficiently often differentiable). As we will be repeating this process, we will have lost a zero of h^{\prime} but we will regain it at some higher derivative. Since such a coincidence can occur at most once for each sequence, the lost zero will be rewon at the latest when we have arrived at the $n+1$ st derivative.

Thus by repeating this process, we may conclude that $h^{(n+1)}$ has at least $m_{0}+m_{1}+\cdots+m_{n}=N$ zeros. Thus $h^{(n+1)} \equiv 0$. By Lemma 2, $\operatorname{dim} H^{(i)}=$ $N-1$ for $i=1,2, \ldots, n+1$. Therefore $h^{\prime} \equiv 0$ and so $h \equiv$ constant. But $h(t)=0$ at one of the knots, thus $h \equiv 0$ as desired.

If one assumes a little more about the zeros of the elements of $H^{(n)}$, then no assumption on $H^{(n+1)}$ is needed. The concept we use is that of the multiplicity of zeros, which may be found in Karlin and Studden [3]. Let $f \in C(K)$ or $f \in C(I)$, where I is the closed interval $[a, b]$. Let $f(t)=0$. We say that f has a zero of order one at $t \in K$ or $t \in[a, b]$ if f changes sign at t or if t is one of the endpoints of I. We say that f has a zero of multiplicity two if $f(s) \geqslant 0$ or $f(s) \leqslant 0$ in some neighborhood of t. $\tilde{Z}(f)$ will denote the number of zeros of f counting multiplicities in this way.

It is well known that if $H \subset C(K)$ or $H \subset C(I)$ is a Chebycheff subspace of degree n, then $\tilde{Z}(f) \leqslant n-1$ for each $f \in H$. Moreover, for any $f \in C(K)$, $\tilde{Z}(f)$ is always an even number. The interesting feature of these con-
siderations is that a zero t of f may be counted with multiplicity two even though $f^{\prime}(t)$ may not exist.

Theorem 5. Let E be an $m \times(n+1)$ incidence matrix which has exactly N ones, has at least one 1 in its 0 th column and which has no odd supported sequences. Suppose that $H \subset C_{n}(K)$ has dimension N and that no $g \in H^{(n)}$ has more than $N-1$ zeros counting multiplicities. Then E is regular with respect to H.

If E satisfies the above conditions and has more than N ones, then the only solution to the homogeneous B.I.P. corresponding to E is the zero function.

The proof follows that of Theorem 4 except that one may only conclude that an h satisfying the homogeneous B.I.P. has an nth derivative which has at least N zeros counting multiplicities. The main new technical difficulty occurs when, while counting zeros, a new zero is to be added to a sequence ending in the nth column. A satisfactory treatment of this difficulty may be found in Keener [4].

A particularly simple case in which the hypothesis is satisfied is if $G=\operatorname{span}\left\{1, H^{(n)}\right\}$ is a Chebycheff space of dimension N (if $\operatorname{dim} H=N$). Then no element of G and hence no element of $H^{(n)}$ can have more than $N-1$ zeros counting multiplicities. It will be shown later that this holds for $\mathscr{P}_{n, r}$ the set of periodic algebraic polynomials. There are some hints that this favorable circumstance is not improbable. Firstly, for any H satisfying the conditions of Theorem 5, the constant function can never belong to $H^{(n)}$ so that dim $\operatorname{span}\left\{1, H^{(n)}\right\}=N$ always. Secondly, the following lemma, whose proof follows easily from Lemma 3, holds.

Lemma 6. Let H be an N-dimensional subspace of $C_{n}(K)$ such that no non-zero element of $H^{(n)}$ has more than $N-1$ zeros. Then span $\left\{1, H^{(i)}\right\}$ is an N-dimensional Chebycheff subspace of $C_{n-i}(K)$ for $i=1, \ldots, n-1$.

III. Simultaneous Approximation

We may use these results on the periodic B.I.P. to characterize the dimension of the set of best approximations to a function with respect to a simultaneous norm.

We defined

$$
\|f\|_{k}=\max _{j=0,1, \ldots, k}\left\|f^{(j)}\right\|
$$

for $f \subset C_{k}(K)$. Let $H \subset C_{k}(K)$. Then we denote by $\Omega_{H, k}(f)$ (or by $\Omega_{H}(f)$), the set of best approximations to f from H with respect to $\|\cdot\|_{k}$ and by
$E_{H, k}(f)$ the degree of approximation to f from H. Then for each $h \subset \Omega_{H}(f),\|f-h\|_{k}=E_{H, k}(f)$. By $U_{j}(f, h)$, we denote the extremal sets of the approximation h to f

$$
U_{j}(f, h)=\left\{t \in K \mid\left\|f^{(j)}-h^{(j)}\right\|=\|f-h\|_{k}\right\}
$$

for $j=0,1, \ldots, k$. The extremal sets are compact and at least one of them is non-empty. Since $\Omega_{H}(f)$ is convex, it has a relative interior and a relative dimension. $\operatorname{dim} \Omega_{H}(f)$ will denote the relative dimension of $\Omega_{H}(f)$. Any element of H lying in the relative interior of $\Omega_{H}(f)$ will be called a minimal best approximation (to f). This terminology is motivated by

Lemma 7. If h is a minimal best approximation to f, then for any other best approximation g,

$$
U_{j}(f, h) \subset U_{j}(f, g), \quad j=0,1, \ldots, k
$$

Thus the extremal sets of a minimal best approximation are the smallest possible. It follows immediately that for any two minimal best approximations h, g to f, we have $U_{j}(f, h)=U_{j}(f, g), j=0,1, \ldots, k$. These common sets will be denoted by $U_{j}(f)$ and will be called the extremal sets of f since they depend only on f and H and not on the choice of a minimal best approximation.

Lemma 8. We have

$$
U_{j}(f) \cap U_{j+1}(f)=\varnothing, \quad j=0,1, \ldots, k-1
$$

and if $g, h \in \Omega_{H}(f), f \in C_{k+1}(K)$ and $H \subset C_{k+1}(K)$, then

$$
\begin{aligned}
g^{(j)}(t) & =h^{(j)}(t), & & t \in U_{j}(f) \\
g^{(j+1)}(t) & =h^{(j+1)}(t), & & t \in U_{j}(f)
\end{aligned}
$$

for all $j=0,1, \ldots, k$.
The fact that two best approximations must coincide on so many points yields the uniqueness theorem.

Theorem 9. Let H be an N-dimensional subspace of $C_{k+2}(K)$ such that no non-zero element of $H^{(k+2)}$ has more than $N-1$ zeros. Let $f \in C_{k+1}$. If $U_{0}(f) \neq \varnothing$, then the best approximation to from H with respect to $\|\cdot\|_{k}$ is unique. If $U_{0}(f)=\varnothing$, then $\operatorname{dim} \Omega_{H, k}(f)=1$. In any case, $\operatorname{dim} \Omega_{H, k}(f) \leqslant 1$.

Proof. Let h be a minimal best approximation to f and g be any other element of $\Omega_{H}(f)$. By Lemma 8,

$$
\begin{aligned}
(h-g)^{(j)}(t) & =0 \\
(h-g)^{(j+1)}(t) & =0
\end{aligned}
$$

for $t \in U_{j}(t), j=0,1, \ldots, k$. Let E be the incidence matrix corresponding to these conditions. We will show that E contains at least N ones. By Lemma 8, we know that the pairs of conditions appearing above cannot overlap each other. Thus E has only even sequences. If therefore E had $M \leqslant N-1$ ones, we could add $N-M$ new ones to the 0 th column (adding new knots if necessary) to obtain an incidence matrix \bar{E} satisfying the conditions of Theorem 4. It follows that there is a $u \in H$ satisfying

$$
u^{(j)}(t)=\sigma(h(t)-f(t))
$$

for $t \in U_{j}(t), j=0,1, \ldots, k$, where $\sigma(t)$ is the sign of t. But then $h-\varepsilon u$, for all $\varepsilon>0$ sufficiently small, is a better approximation to f than h is. This is by assumption not possible, so $M \geqslant N$.

As in the proof of Theorem 4, $(h-g)^{(k+1)}$ has M zeros and therefore $(h-g)^{(k+1)} \equiv 0$. Since $\operatorname{dim} H^{(1)}=\operatorname{dim} H^{(k+1)},(h-g)^{\prime} \equiv 0$ and so $h-g$ is a constant. If $U_{0}(f) \neq \varnothing$, then $(h-g)(t)=0$ at one of the knots which implies that $h-g \equiv 0$ and that $\Omega_{H, k}(f)=\{h\}$. If $U_{0}(f)=\varnothing$, then $h+c \in \Omega_{H}(f)$ for all constants c such that $|c|$ is sufficiently small.

Theorem 10. Let H be an N-dimensional subspace of $C_{k+1}(K)$ such that no non-zero element of $H^{(k+1)}$ can have more than $N-1$ zeros counting multiplicities. Let $f \in C_{k+1}(K)$. If $U_{0}(f) \neq \varnothing$, then the best approximation to f from H with respect to $\|\cdot\|_{k}$ is unique. If $U_{0}(f)=\varnothing$, then $\operatorname{dim} \Omega_{H, k}(f)=1$. In any case, $\operatorname{dim} \Omega_{H, k}(f) \leqslant 1$.

IV. An Example

By $\mathscr{P}_{n, r}$, we denote the space of periodic algebraic polynomials:

$$
\mathscr{P}_{n, r}=\left\{P \in \Pi_{n} \mid P^{(i)}(0)=P^{(i)}(2 \pi), \quad i=0,1, \ldots, r\right\}
$$

We will show that if $n-r$ is odd, then $\mathscr{P}_{n, r}$ satisfies the assumptions of Theorem 10 with $N=n-r$ and for any $k \leqslant r-1$.

Lemma 11. Let $\mathscr{P}_{n, r}$ be the space of periodic algebraic polynomials defined above. Suppose $n-r$ is odd.

Then

(1) $\operatorname{dim} \mathscr{P}_{n, r}=n-r$;
(2) $\mathscr{P}_{n, r}$ is a Chebycheff subspace of $C_{r}(K)$;
(3) for each $i, 0 \leqslant i \leqslant r$, no element of $\mathscr{P}_{n, r}^{(i)}$ can have more than $n-r-1$ zeros counting multiplicities.

Proof. We will first show that if $n-r$ is odd, then no element of $\mathscr{P}_{n, r}^{(i)}$ can have more than $n-r-1$ zeros counting multiplicities for $i=0,1, \ldots, r$. Due to Lemma 3, it suffices to show this for $i=r$; i.e., to show that for each $P \in \mathscr{P}_{n, r}^{(r)}, \tilde{Z}(P) \leqslant n-r-1$. The elements of $\mathscr{P}_{n, r}^{(r)}$ are polynomials P of degree not exceeding $n-r$ and for which $P(0)=P(2 \pi)$. Suppose that some polynomial P had $\tilde{Z}(P) \geqslant n-r$. Since $n-r$ is odd, $\tilde{Z}(P) \geqslant n-r+1$ since $\tilde{Z}(P)$ is always even. We will now consider P as being defined on $I=[0,2 \pi]$. Let $\tilde{Z}_{K}(P)$ (respectively $\tilde{Z}_{I}(P)$) be the number of zeros of P counting multiplicities when defined on K (respectively when defined on $I=[0,2 \pi])$. It can easily be seen that $\tilde{Z}_{K}(P) \leqslant \tilde{Z}_{I}(P)$. But $\tilde{Z}_{K}(P) \geqslant$ $n-r+1$ so that also $\tilde{Z}_{l}(P) \geqslant n-r+1$. Since $P \in \Pi_{n-r}, P \equiv 0$. This proves (3).

By definition, $\mathscr{P}_{n, r}$ is a subspace consisting of those elements of the $n+1$ dimensional space Π_{n} which satisfy $r+1$ linear conditions. Thus dim $\mathscr{P}_{n, r} \geqslant n-r$. But, if $n-r$ is odd, we have just shown that no element of $\mathscr{P}_{n, r}$ can have more than $n-r-1$ zeros. Therefore $\mathscr{P}_{n, r}$ is a Chebycheff subspace and $\operatorname{dim} \mathscr{P}_{n, r}=n-r$ which proves (1).

Since, by definition, all elements of $\mathscr{P}_{n, r}$ have periodic derivatives of order up to r, (2) has also been shown.

An interesting aspect of this proof is that absolutely no calculations were needed to show that $\operatorname{dim} \mathscr{P}_{n, r}=n-r$. An alternative proof would have been to show that the $r+1$ linear conditions determining $\mathscr{P}_{n, r}$ are linearly independent (which is not hard to do). Then $\operatorname{dim} \mathscr{P}_{n, r}=n-r$ follows immediately (even if $n-r$ is even).

Corollary 12. Let $f \in C_{k+1}(K)$. Let $n \geqslant r \geqslant 0, n-r$ be odd and $k \leqslant r-1$. Then the dimension of the set of best approximations from $\mathscr{P}_{n, r}$ to f with respect to $\|\cdot\|_{k}$ does not exceed 1 . In particular, if $U_{0}(f) \neq \varnothing$, the best approximation is unique. If $U_{0}(f)=\varnothing$, the set of best approximations has dimension exactly one.

Corollary 13. For $1 \leqslant i \leqslant r$,

$$
\operatorname{span}\left\{1, \mathscr{P}_{n, r}^{(i)}\right\}=\mathscr{P}_{n-i, r-i}
$$

V. Concluding Remarks

As in [6], the norm of simultaneous approximation could have been chosen to be

$$
\|f\|_{F}=\max _{i=1, \ldots, p}\left\|f^{\left(k_{i}\right)}\right\|
$$

where $0 \leqslant k_{1}<k_{2}<\cdots<k_{p}$. For this semi-norm, the formulation of Theorems 9 and 10 and their proofs remain the same.

The assumption that $f \in C_{k+1}(K)$, which was made in Theorems 9 and 10 , appears unnatural since the norm $\|\cdot\|_{k}$ involves derivatives of order only up to k. The theorems are, however, false without this assumption as can be seen by example given in [2].

Theorems 4 and 5 on the regularity of the periodic B.I.P. are not sharp of course because they only give necessary conditions for regularity. By comparing these general theorems with their trigonometric counterparts [1], one sees which of the assumptions are indispensable.

References

1. D. J. Johnson, The trigonometric Hermite-Birkhoff interpolation problem, Trans. Amer. Math. Soc. 212 (1976), 365-374.
2. D. J. Johnson, Nonuniqueness of simultaneous approximation by trigonometric polynomials, in "Approximation Theory II" (G. G. Lorentz, C. K. Chui, and L. L. Schumaker, Eds.), pp. 411-415, Academic Press, New York, 1976.
3. S. Karlin and W. J. Studden, "Tchebycheff Systems: With Applications in Analysis and Statistics," Interscience, New York, 1966.
4. L. L. Keener, Hermite-Birkhoff interpolation and approximation of a function and its derivatives, J. Approx. Theory 30 (1980), 129-138.
5. R. A. Lorentz, Nonuniqueness of simultaneous approximation by algebraic polynomials, J. Approx. Theory 13 (1975), 17-23.
6. R. A. Lorentz, Simultaneous approximation, interpolation and Birkhoff systems, J. Approx. Theory 37 (1983), 125-136.
7. R. Zielke, "Discontinuous Cebyšev Systems," Lecture Notes in Math. No. 707, SpringerVerlag, Berlin, 1979.
